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The de®nition of an extended crystallographic group is given, based on an

n-dimensional Euclidean space, carrier of a faithful integral representation

of a permutation group of atomic positions. The Euclidean crystallography of

normal crystals and the higher-dimensional one applied to incommensurately

modulated crystals, intergrowth crystals and quasicrystals are special cases of a

general crystallography. The same is true for the multimetrical crystallographic

characterization of ice and of snow crystals. This approach can also be applied

to single molecules, leading to what may be denoted as molecular crystal-

lography. It possibly allows non-trivial structural relations between atomic

positions belonging to the asymmetric unit of the molecular point group to be

obtained. Two simple molecules, polycyclic aromatic hydrocarbons, are treated

as illustrative examples.

1. Preliminary remarks

The need to extend crystallography beyond Euclidean crys-

tallography was already apparent with the superspace

approach for incommensurate crystal phases which restores

lattice symmetry in a higher-dimensional space only (Janner &

Janssen, 1980a,b; Janssen et al., 1999). The discovery of

quasicrystals with scaling invariant diffraction peak positions

(Ostlund & Wright, 1986; Shechtman et al., 1984) also requires

a suitable non-Euclidean extension because scaling does not

leave the Euclidean distance invariant. Consider, as illustra-

tion, the one-dimensional Fibonacci chain (observed in many

structures), which is characterized by a sequence of two

intervals L and S in the golden mean ratio L=S � � �
�1� 51=2�=2, invariant with respect to the scale transformation:

S! L and L! L� S. This transformation is expressible as

a two-dimensional invertible integral matrix and the square of

it is a hyperbolic rotation in the superspace leaving invariant a

square lattice. The Fibonacci scale transformation is of such

fundamental importance for the structural properties of a

Fibonacci chain that it justi®es the necessity to extend Eucli-

dean crystallography to include hyperbolic rotations. The

appearance of circular and hyperbolic rotations in the same

group is re¯ected in the name multimetrical crystallography

(Janner, 1991, 1995) we have adopted. Multimetrical crystal-

lography can also be applied to normal crystals. In particular,

the atomic structure of ice is left invariant by a multimetrical

space group. Its point group, of in®nite order, allows the

interpretation of structural features in snow crystals (Janner,

1997).

The possible relevance of an analogous multimetrical point

group for sixfold helical nucleic acid molecules is revealed by

hexagonal scaled forms similar to those observed in snow

crystals, but now occurring at the microscopic molecular level.

In the molecules involved, a number of atomic positions in the

asymmetric unit of the Euclidean line symmetry group, if

considered modulo translations along the helical axis, can be

related by elements of this extended point group. This

observation opened the door for a crystallographic approach

applied to (idealized) molecular structures occurring, in

particular, in biomacromolecules with a given axial rotation

symmetry (Janner, 2000, 2001).

A formal de®nition of an extended crystallographic group

given in x2 applies to all the various crystallographic ap-

proaches mentioned above, as shown in x3. Before considering

the technical details, one should keep in mind that crystal-

lography (general or not) always describes structural relations

of a Euclidean system, even if possibly expressed by non-

Euclidean transformations. The Euclidean character of the

system implies that the Euclidean group is the covariance

group, which is the symmetry group of Euclidean geometry,

the invariance transformations, however, need not be Eucli-

dean.

In the course of the exploration of biomacromolecules, the

conviction grew that, to reach a better understanding of what

is going on at the physical level, one should consider generical

molecules and not biomacromolecules only. In other words,

it is a question of physics and of chemistry and not of

biochemistry only. To justify this expectation, illustrative

molecular examples reported in x4 are supramolecules, having

benzene as modular repeat unit (Berresheim et al., 1999). In

these cases, it is the sixfold symmetry of benzene that allows

one to adopt the same point group of in®nite order, as for

snow ¯akes, but at the same atomic level as for hexagonal

nucleic acids.

The question of the physical relevance of the present

approach is still open. In any case, its physical foundation is

ensured because all the structures involved occur in nature



and obey, therefore, the laws of physics (and of chemistry).

From this general statement, one cannot expect that one is

also able to indicate in each concrete case the speci®c

connections between structure and physics due to the new

observed structural relations.

Last but not least a warning: the present formulation is at

a working level only, even if considered by the author to be

essentially correct. He is aware that a meaningful general-

ization of the classical crystallographic framework requires

the involvement of many more scientists than himself only,

and that future work can lead to important conceptual

changes.

2. Basic concepts

Crystal structures are considered as point sets in a way as

described in the book Crystallographic and Metacrystallo-

graphic Groups by W. Opechowski, warmly recommended to

readers interested to know more (Opechowski, 1986). There,

invariance groups of functions de®ned on crystal structures

were considered. Here, the concept of a crystallographic group

itself is extended to include non-Euclidean transformations

also, and the crystallographic structures considered are more

general than those of crystals in a point-atom approximation

but the aim is the same: to convey the underlying mathema-

tical ideas not only to crystallographers but to physicists,

chemists and biologists as well.

2.1. Model and real structures

Considered are model structures X speci®ed in terms of

positions given as a discrete set of points x in the three-

dimensional Euclidean space:

X � fxjx 2 E�3�g: �1�
Real structures Y are given in the same way, together with a

correspondence � between model and real positions:

� : X0ÿ!Y0 for ��X0� � Y0 � Y; X0 � �ÿ1�Y0� � X

�2�
having the following properties:

(i) the model structure is an approximation of the real one

within a given upper bound "

jxÿ yj � " for y � ��x�;
(ii) the de®nition domain of � is in general a subset X0 of

the model structure X (typically, the correspondence between

model positions and real structure involves a ®nite number of

atoms, whereas the model set can be in®nite);

(iii) the mapping � is injective (it is thus a monomorphism):

��x� 6� ��x0� implies x 6� x0 and conversely;

(iv) the image of � is in general a subset Y0 of the whole

structure Y (a number of atoms are possibly disregarded).

At the microscopic level, the positions are atomic positions.

For macroscopic structures, positions may represent inclusions

or averaged structures. For macromolecules, different hier-

archical levels are possible, where positions are associated

with single atoms or with atomic clusters of increasing

complexity. In the case of crystals, the restrictions given above

are considered to be self-evident without any conceptual

consequences. The deviations between real and determined

structures are expressed in terms of an R factor, " being the

resolution. One mostly forgets about defects and interstitial

atoms. A periodic boundary condition allows one to bridge the

gap between ®nite structure and in®nite crystal.

In the case of aperiodic crystals, the same restrictions

require an additional change of perspective and new concepts.

For modulated and intergrowth crystals, a higher-dimensional

description in a Euclidean superspace is adopted leading to

modulation lines and to atomic surfaces instead of point atoms.

For quasicrystals, an analogous superspace approach implies,

within the cut-projection method, a projection in real space of

positions occurring in the cut region.

Finally, in the biomacromolecular case, the concept of

partial structure arises naturally when speaking of backbone

and that of non-crystallographic symmetry takes into account a

mis®t between the structural properties of molecules, or of

molecular fragments, considered locally, and those compatible

with the crystallography of their crystalline order (Rossmann

& Arnold, 1993). Pseudosymmetry is used when a non-negli-

gible part of the atoms approximately has a higher symmetry

than the whole structure (Viterbo, 1992). Here, we avoid

speaking of non-crystallographic symmetries because the aim

is to show that these symmetries are crystallographic, even if

in a more general sense only. We adopt instead and generalize

the term pseudosymmetry, which re¯ects the spirit of the

present approach.

All this leads to the speci®cation of a generalization of the

meaning of crystallographic structure and of a crystallographic

group common for all the above structures.

2.2. Crystallographic structures and groups

Crystallography is based on an interplay between geometry,

number theory (arithmetic in particular) and algebra. These

three aspects remain essential in the extension given here. As

already pointed out, a crystallographic structure obeys the

laws of Euclidean geometry, so that the Euclidean group is the

covariance group of the system (an invariance group leaves the

system invariant, whereas a covariance group leaves invariant

the laws of the system). The equivalent positions involved can

be labeled by sets of rational integers, the indices, because of

underlying lattices (direct and reciprocal) and there is a non-

trivial invariance group of the indexed positions. These

requirements, which strictly speaking only apply to ideal

structures, are re¯ected in the de®nition of an extended

crystallographic group. A structure having such a group as

invariance group is then also called an (extended) crystal-

lographic structure.

De®nition 1. A group G of permutations of a discrete set of

points X � fxjx 2 E�3�g is called an extended crystallographic

group if there is an n-dimensional Euclidean representation
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space E�n� carrier of faithful linear integral representations

ÿ�G� and ÿ��G�.
This implies:

(i) GX � X with G � S�X�, where S is the symmetric group

of the set X ;

(ii) there are in E�n� dual bases a � fa1; . . . ; ang and

a� � fa�1; . . . ; a�ng such that: ÿ�g� � g�a� 2 Gl�n;Z� and

ÿ��g� � g�a�� 2 Gl�n;Z� for any g 2 G, where Gl�n;Z� is the

group of the invertible n-dimensional integral matrices;

(iii) ÿ�G� ' ÿ��G� ' G, with ' denoting group iso-

morphism.

Accordingly, one has:

ÿ�G� � Gl�n;Z� and ÿ��G� � Gl�n;Z�: �3�
The Euclidean structure of the representation space is needed

to allow one to derive from the dual representations ÿ and ÿ�

the corresponding relations between atomic positions and

diffraction spots and/or delimiting planes. In general, however,

ÿ�G� and ÿ��G� need not leave invariant the Euclidean metric

of E�n�.
De®nition 2. An extended crystallographic structure is a

discrete point set X whose invariance group is an (extended)

crystallographic group G. This group is a pseudosymmetry

group (as de®ned further on) of the corresponding real

structure. The symmetry group of the structure is a Euclidean

subgroup G0 of G.

In many cases, but not always, G0 is the maximal Euclidean

subgroup of G, so that G0 � G \ E�3�. Normally, the point set

X is in®nite; it can also be ®nite. The discreteness is essential:

According to this de®nition, the charge-density distribution of

a crystal is not a crystallographic structure.

The model crystallographic structure X is partitioned into

sets of G-equivalent points. Each set forms an orbit, generated

by G from one point of the orbit. The group G is not an

invariance group of the real structure Y and, in general, not

even of the set X0 � �ÿ1�Y0� of the corresponding model

positions. This X0 is, however, also partitioned into sets of

G-equivalent points, belonging thus to one orbit, but not

forming, in general, a complete orbit. The group elements

involved in this equivalence imply structural relations for X0

and thus also for the real structure, even if in an approximate

way only.

De®nition 3. An extended crystallographic group G is a

pseudosymmetry group of a real structure Y if for � the

mapping considered above from the corresponding model

denoted by X, for given small deviations with an " upper

bound, one has:

X0 � GX0 for X0 � �ÿ1�Y0�; X0 � X and Y0 � Y

and the asymmetric unit with respect to the pseudosymmetry

group G is smaller than the one with respect to the (Eucli-

dean) symmetry group G0, subgroup of G.

While this de®nition takes into account the approximate

character admitted for a pseudosymmetry in the usual sense,

no condition is imposed here on `a non-negligible part' of the

atoms involved.

2.3. Crystallographic forms

The laws of crystallography have been discovered

phenomenologically by looking at crystal growth forms. The

theoretical idea of an underlying lattice of symmetry transla-

tions became accepted on the basis of two experimental

properties of growth forms (Friedel, 1911):

(a) the law of rational indices, which allows assignment

to ¯at facets a set of three indices h; k; l (small integers),

interpreted as components of a reciprocal-lattice vector

�h; k; l� � ha�1 � ka�2 � la�3 2 ��, perpendicular to the facet;

(b) the classi®cation of all observed growth forms into 32

crystal classes, obtained by imposing on conjugated ®nite

subgroups of O�3� the condition to leave invariant the corre-

sponding dual set of direct-lattice points �u; v;w� �
ua1 � va2 � wa3 2 �.

Accordingly, a crystal growth form is delimited by one or more

sets of point-group-equivalent lattice planes. From crystal

morphology, one only gets ratios between lattice vectors, so

that nothing can be said about their absolute lengths. There-

fore, the lattice can equally well be mesoscopic or microscopic.

On the basis of X-ray diffraction, one identi®es � and �� with

the microscopic lattice of symmetry translations and of the

positions of the Bragg peaks, respectively.

In snow ¯akes, however, macroscopic lattices � and ��

both have a morphological meaning. Indeed, snow crystals are

characterized by scaled growth forms (Janner, 1997). As shown

further on, these scaled forms allow a double set of rational

indices: one for the planes (lines in the two-dimensional

description) and one for points (at water droplets or at

dendritic bifurcation points). Scaled forms of the same type

enclose hexagonal biomacromolecules like poly(C) (Janner,

2000, 2001), but now for molecular indexing lattices (to be

distinguished from the translation lattice of the corresponding

crystalline phase).

The indexing lattices � and �� are generated by the bases of

the n-dimensional representations ÿ and ÿ�, respectively,

de®ned above for (extended) crystallographic structures. In

particular, for scaled forms one has:

De®nition 4. A scaled form consists of point-group-equivalent

planes through points equivalent by the same extended crys-

tallographic point group K.

Accordingly, these scaled planes p can be indexed as:

p � �h1; . . . ; hn��m1; . . . ;mn�
with �h1; . . . ; hn� 2 ��; �m1; . . . ;mn� 2 � �4�

with �� and � freely generated by a� � ha�1; . . . ; a�ni and by

a � ha1; . . . ; ani bases of the representations ÿ��K� and ÿ�K�,
respectively.

There are two possible equivalence relations for scaled

planes, which are compatible with the de®nition given above.

A strong equivalence requires:



p0 � p !�h01; . . . ; h0n��m01; . . . ;m0n�
� ��a���h1; . . . ; hn���a��m1; . . . ;mn�

for � 2 K; �5�
whereas for the weak equivalence it is suf®cient to have:

p0 � p !�h01; . . . ; h0n��m01; . . . ;m0n�
� O�h1;...;hn��K�O�m1;...;mn��K� �6�

for O an orbit of K in the representation space.

Experimental data seem to favor the weak equivalence, but

it makes sense to consider both. Scaled forms are one of

several possible crystallographic forms, whose characteristic

features are summarized in Table 1.

3. Crystallographic approaches in a nutshell

The aim is to show how the various approaches mentioned in

the ®rst section satisfy the same set of de®nitions given in x2
and are, therefore, special cases of a general crystallography.

3.1. Euclidean crystallography

Discussed is the three-dimensional crystallography, which

is the normal case. For other dimensions, the properties are

correspondingly the same.

A model crystal X is characterized by lattice periodicity:

�X � X � E�3� for � � ha1; a2; a3i ' Z3: �7�
Here, a lattice is identi®ed with the group of lattice transla-

tions. Let us now consider typical cases.

As extended crystallographic group, the lattice translation

group � can be associated with a four-dimensional repre-

sentation space spanned by a0; a1; a2; a3 with a0 perpendicular

to the space of the crystal.

� ' ÿ��� � Gl�4;Z� with ÿ�t� � 11 t�a�
0 1

� �
; t 2 �;

�8�
with t�a� an integral column vector expressing t with respect to

the lattice basis a � fa1; a2; a3g, and 11 is the three-dimensional

unit matrix. One clearly also has

�� ' ÿ����� � Gl�4;Z�
with ÿ��t� � 11 t�a��

0 1

� �
; t 2 �� �9�

with t now expressed with respect to the dual basis a�.
A point group K leaving � invariant is not only crystal-

lographic but also extended crystallographic. The repre-

sentation space is three-dimensional and identi®ed with the

space of the crystal.

K ' ÿ�K� � Gl�3;Z�; ÿ��� � ��a� for � 2 K � O�3�;
�10�

where ��a� denotes the orthogonal transformation �
expressed in the lattice basis a. As

��a�� � ~�ÿ1�a�; �11�
where ~ denotes transposition, one also has

K ' ÿ��K� � Gl�n;Z�.
The point-group representation space used in International

Tables for Crystallography (Hahn, 1992) is not always three-

dimensional. Indeed, the four-index notation adopted for the

trigonal and hexagonal systems de®nes a four-dimensional

representation space, as discussed by Frank (1965).
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Table 1
Comparative characterization of (extended) crystallographic forms.

Crystals Aperiodic crystals
incommensurate and
quasicrystals

Molecules with a crystallographic
pseudosymmetry groupNormal case Snow ¯akes

Physical system n � 3 n � 2�3� n > 3 n � 3

Geometric form F Growth form Scaled growth form Growth form Scaled enclosing form

Point group K Finite In®nite Finite In®nite
ÿ�K� � Gl�n;Z�
ÿ��K� � Gl�n;Z�

Lattice group � Translations Indexing of plane
positions

Quasitranslations Indexing of plane
positions� ' Zn Z-module of rank n

K� � �

Reciprocal lattice �� Indexing of plane
orientations

Indexing of plane
orientations

Indexing of plane
orientations

Indexing of plane
orientations�� ' Zn

K�� � ��

F delimiting planes �-orbit planes �-orbit planes = K-orbit planes Z-module orbit planes K-orbit planes
F � KF F � KF F � KF F � KF

Remarks: [1] n is the dimension of the (Euclidean) representation space of a linear integral faithful representation of the point group K. [2] The quasitranslations are orthogonal
projections, into the space of the crystal, of n-dimensional lattice translations in the superspace, which is a Euclidean representation space. Self-similarity of quasicrystal structures has
been disregarded here. [3] F-planes delimiting holes do not only occur in molecular enclosing forms, but have also been observed in quasicrystals (Janot et al., 1999; Mancini et al.,
1998).
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A space group is also an extended crystallographic group. A

non-symmorphic space group is always a subgroup of a

symmorphic one, where the non-primitive translations of the

subgroup are lattice translations (Ascher & Janner, 1968).

Therefore, it is suf®cient to consider a symmorphic space

group G. In this case, writing

g � f�jtg 2 G with � 2 K; t 2 �; �12�
one has ÿ�G� ' G de®ned by

ÿ�g� � g�a� � ��a� t�a�
0 1

� �
2 Gl�4;Z�; g � f�jtg 2 G:

�13�
Again, ÿ��G� is also crystallographic.

3.2. Superspace crystallography

Superspace crystallography characterizes the symmetry of

aperiodic crystals like incommensurately modulated, inter-

growth or composite crystals (Janssen et al., 1999) and of

quasicrystals (Janssen, 1986; Yamamoto, 1996). The repre-

sentation space is n-dimensional Euclidean and called super-

space.

To begin with, let us consider a d-dimensional incommen-

surately modulated crystal in three dimensions X � E�3). The

Euclidean asymmetric unit of X is in®nite and in one-to-one

correspondence with the ®nite asymmetric unit of a �3� d�-
dimensional crystal with respect to a space group Gs (a

superspace group, more precisely). This higher-dimensional

space group induces in three-space an isomorphic group of

permutations G of the atomic positions in X .

G � S�X�; G ' Gs ' ÿ�G�;
Gs � E�3� d�; ÿ�G� � Gl�4� d;Z�: �14�

The symmetry group G of a modulated crystal is a non-

Euclidean permutation group in three dimensions, but is

isomorphic to a Euclidean space group Gs in �3� d� dimen-

sions. The superspace can thus be considered as a repre-

sentation space for the extended crystallographic group G, in

the same way as in (8) for the three-space.

For quasicrystals, the situation is similar but not exactly the

same because of the existence of a one-to-one correspondence

(given by a projection �) between a basis as � a1s; . . . ; ans of a

lattice �s in the n-dimensional superspace and a projected

basis a � a1; . . . ; an spanning the three-dimensional space of

the quasicrystal, linearly independent of the rational numbers

and generating a free Z-module M of rank n. For a modulated

crystal, this is only the case for the dual �� and M� in the

corresponding reciprocal space because some of the elements

of the basis as can project in three-space to zero. In particular,

and in the standard basis representation, the modulation wave

translations are along a direction perpendicular to the three-

dimensional space. For quasicrystals, the relation between the

two bases a and as (and correspondingly a� and a�s ) can be

found in the paper by Yamamato quoted above (Yamamoto,

1996).

The dimension of the representation space depends on the

point group K, which is a ®nite subgroup of O�3� and has

always a faithful integral representation ÿ�K� of minimal

dimension n with basis a of the three-space as above. In the

particular case of a cyclic point group of order m, and for

m � 3, the minimal dimension n is given by '�m� � 1, where '
is the Euler function. The function '�m� counts the number of

integers i not exceeding m and coprime with m (see e:g
Grosswald, 1966). For m prime, '�m� � mÿ 1 and the

Z-module basis a is given by

a1; �a1; . . . ; �mÿ2a1; a3

with �a3 � a3 ? a1; �
m � 1; � 2 O�3�; �15�

where � is the generating rotation and m � 3. As ÿ�K� is a

®nite subgroup of Gl�n;Z�, it can be considered as a group of

orthogonal transformations Ks in the superspace, expressed

with respect to the lattice basis as. The projected lattice

translations are then possible translational symmetries of the

quasicrystals and are called quasilattice translations. One has:

KM � M ' Zn; Ks�s � �s; K ' Ks ' ÿ�K� � Gl�n;Z�
�16�

with M � ��s and � is the projection considered above. Point

group and (quasi)lattice translations can then be combined in

the usual way to form an n-dimensional space group. The

orthogonal character of the point group ensures the validity of

corresponding dualities, which in the superspace are given by

the Euclidean duality between the direct and the reciprocal

spaces. Accordingly, one can conclude that the symmetry

group of a quasicrystal is an extended crystallographic one.

3.3. Multimetrical crystallography

The crystallographic approaches described so far have been

extended to multimetrical ones in order to include self-simi-

larity in the crystallography of quasicrystals. Indeed, a self-

similarity � of the module M of quasitranslations leads in the

superspace to a hyperbolic rotation leaving invariant the

corresponding n-dimensional lattice �s of symmetry transla-

tions. It is, therefore, a element of an orthogonal group

O�nÿ q; q�, for q a positive integer smaller than n, leaving an

inde®nite metric invariant and having an integral matrix

representation ÿ�M� � ÿ���. The point group K consists of

scale-rotation transformations. In the simplest case, one has:

K � h�; . . . ; �; . . .i ' ÿ�K� � Gl�n;Z� �17�
for KM � M together with a superspace representation

ÿ��� � ��as� 2 O�n� \Gl�n;Z�
ÿ��� � ��as� 2 O�nÿ q; q� \Gl�n;Z� �18�

de®ning a superspace point group Ks of hyperbolic and

circular rotations leaving �s invariant. The non-trivial prop-

erty, important from the physical point of view, is that the

same Ks also leaves invariant the lattice ��s reciprocal to �s

with respect to the Euclidean metric in the superspace. For the

corresponding reciprocal basis a�s , one indeed has



ÿ���� � ��a�s � � ~�ÿ1�as�
ÿ���� � ��a�s � � ~��as�

�19�

for � a circular rotation and � a hyperbolic rotation, with

~ denoting transposition. The more general case is a combi-

nation of these two pure cases. The same relations then follow

in space for the dual modules M and M� and the corre-

sponding dual Z-module bases a and a�. As one also has the

possibility of de®ning lattice translations in the superspace and

corresponding (projected) quasitranslations in space, one

derives multimetrical space groups Gs in the usual way.

Moreover, the Euclidean subgroup G0s is the symmetry group

of the quasicrystal when self-similarity is not taken into

account.

For n � 3, the superspace can be identi®ed with the physical

space and one can consider a multimetrical space group

leaving a given (normal) crystal invariant. In this case, strictly

speaking, there are no scaling transformations (which never

leave a lattice invariant). Scaling appears in a more subtle way,

macroscopically through scaled growth forms and micro-

scopically through properties of the Wyckoff positions.

Indeed, Wyckoff positions for the multimetrical group consist

of complete sets of Wyckoff positions for the Euclidean

subgroup and occur in scaled related families (Janner, 1995).

The multimetrical invariance space group for the ice

structure has been determined. Its point group, of in®nite

order, has 6=mmm as Euclidean subgroup, leaves the hexag-

onal lattice invariant, is generated by

K � hLz;Rz;mz;mxi � �4�6=mmm �20�
and has a faithful matrix representation ÿ�K� de®ned by the

matrices

Rz�a� �
1 ÿ1 0

1 0 0

0 0 1

0B@
1CA; Lz�a� �

3 1 0

2 1 0

0 0 1

0B@
1CA;

mz�a� �
1 0 0

0 1 0

0 0 ÿ1

0B@
1CA; mx�a� �

ÿ1 1 0

0 1 0

0 0 1

0B@
1CA:

�21�

This point group has allowed us to interpret the hexagonal

scaled growth forms observed in snow crystals (Janner, 1997).

What has been presented so far indicates how one can show

that multimetrical crystallography is another special case of

the general crystallography de®ned in x2, even if in this paper

we do not give a full treatment.

3.4. Molecular crystallography

The extended symmetry of a molecule can be approached in

the same way as for quasicrystals. Indeed, let X0 describe the

positions of the atoms (irrespective of atom type) of a mole-

cule with a point-group symmetry K0, which is a ®nite

subgroup of O�3�. As in the case of quasicrystals, there is a set

of vectors a1; . . . ; an in space, linearly independent of the

rational numbers, spanning a faithful integral representation

ÿ�K0�. This matrix group can be regarded as a subgroup of

the orthogonal group O�n� expressed with respect to a basis

as � ha1s; . . . ; ansi of a Euclidean n-dimensional space (the

superspace), generating a lattice �s, whereas the basis a

generates a three-dimensional Z-module M of rank n. The

basis as can be oriented to give by a one-to-one projection in

space the Z-module basis a. The dual basis a�s � ha�1s; . . . ; a�nsi
then generates the reciprocal lattice ��s , de®nes the repre-

sentation ÿ��K� � Gl�n;Z� and projects in three-space to a

basis a� of the dual Z-module M�.
One can always take as ®rst basis vector a1 the vector

pointing to a freely chosen atomic position x0 2 X0 considered

from the origin left invariant by K0, which then is the

projection of a1s � �1; 0; . . . ; 0�. The points belonging to the

K0 orbit of x0, when expressed with respect to the basis a, have

integral coordinates, which are the indices of the corre-

sponding points of the orbit. So far, nothing is gained, as it is

simply a relabeling.

Interesting and not trivial is the case when there is an

invertible linear transformation � not belonging to K0, leaving

both Z-modules M and M� of the molecule invariant (� is then

an automorphism of M and of M�, respectively). In this case,

the point group K0 can be extended to K by including �, still

keeping its (extended) crystallographic property. Indeed, for

K � hK0; �i, one has

��as� 2 ÿ�K� � Gl�nZ�; K ' ÿ�K�; KM � M �22�

and corresponding relations for ��a�s �, ÿ���� and M�. This

procedure can possibly be repeated. Eventually, the group K

one obtains is a pseudosymmetry group for X0, if it implies

non-trivial structural relations expressible by elements of K

among the positions belonging to the Euclidean asymmetric

unit of the symmetry group K0 of the molecule. Note that the

point group K is a group of permutations of positions, not of

atoms of the same type, so that structural relations are also

possible between atoms of different species. This fact has been

one of the main surprising results obtained from a ®rst

phenomenological exploration of scale rotations in nucleic

acids and proteins.

In general, K does not leave X0 invariant. The orbits of K

from X0 form the larger set X of model positions. The need to

make a distinction between real and model positions arises

from the fact that a non-trivial extension is very often only

possible for a more regular structure than the real one.

In speci®c cases, one meets not only the dif®culty of

determining a suitable model (idealized) to be mapped into

the real structure, but also the fact that the in®nite subgroups

of Gl�n;Z� are badly known. Moreover, for n > 3, the orbit

points in three-space are dense and can have arbitrarily large

indices, whereas, for the law of rational indices, only small

integers make sense. As already pointed out, for biomacro-

molecules it is not even required that the positions one has to

consider correspond to single atoms but can refer to still badly

de®ned atomic clusters.

Under these circumstances, it is highly surprising that there

are molecules for which one may recognize non-trivial

pseudosymmetry groups.
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4. Illustrative molecular examples

The examples given in this section are very simple and have

been taken from a review paper on polyphenylene nano-

structures (Berresheim et al., 1999) based on benzene units.

Two cases are considered of polycyclic aromatic hydrocarbons

(PAH) with a two-dimensional architecture, approached here

from the point of view of molecular crystallography. The ®rst

case, a planar one, is C54H22 on graphite with D2h point-group

symmetry (Dias, 1993; Halleux et al., 1958). The second case, a

twisted one, is hexaphenylbenzene in a propeller con®guration

with approximate sixfold symmetry (Bart, 1968).

The ®rst step in a crystallographic characterization of a

given molecule requires the distinction between real and

model structures. In the case of oligophenylene, the radius of a

benzene ring is about 1.4 AÊ and the length of an inter-ring

single bond 1.5 AÊ (Berresheim et al., 1999). For the model

structure, one keeps the same hexagonal arrangement of the

benzene rings and the same distances between the corre-

sponding centers, but with an equal value for both the radius

of a benzene ring and for the inter-ring distance, which is then

1.433 AÊ . This choice represents the best ®t of the model with

the observed structure.

4.1. C54H22 on graphite

This molecule consists of nine benzene rings (Dias, 1993;

Halleux et al., 1958). The planar structure allows the two-

dimensional description adopted here, with a point group

K0 � 2mm for both sets of real and model positions de®ned by

Y0 and X0, respectively, in the notation of de®nition 3 given in

x2, where in X0 and in Y0 the H atoms are omitted. We recall

that X0 denotes the occupied part of the full model structure

X and Y0 the corresponding real structure. The ®t between X0

and Y0 considered above and based on common benzene ring

centers leads to a maximal distance deviation " � 0:033 AÊ

between corresponding C-atom positions (Fig. 1).

All model C positions are on points n1; n2 of a two-

dimensional hexagonal lattice � and this allows their indexing.

In the present case, therefore, the superspace (carrier of the

integral point-group representation) is two-dimensional and

can be identi®ed with the space of the molecular structure. In

the notation of x2, one has: � � �s � M.

Disregarding the hydrogen atoms, the molecular form of

C54, delimited by the set of four planes (�10), (�1�1) is of the

mid-edge type, as in Fig. 4 of (Janner, 1997). This implies

scaling steps by a radial factor 1=2. In this particular case, the

ratio between the largest rhombic form (forming the

envelope) and the central smallest one (the hole) is 1=4. The

intermediate form, following from a ®rst scaling step, also has

a structural meaning (Fig. 2). The scaled planes involved have

a double indexing given by (10)[40], (10)[10], (10)[20],

respectively, together with the 2mm-equivalent ones.

There are 15 atoms in the K0 asymmetric unit of C54, with 12

C atoms in general positions and three C atoms on a mirror

plane. Two non-trivial extensions of K0 by automorphisms of

the hexagonal lattice � give rise to structural relations among

these inequivalent positions:

(i) a sixfold rotation R6;

(ii) a trace-four hyperbolic rotation L4.

These additional transformations generate non-occupied

equivalent positions only outside the rhombic enclosing form.

The sixfold rotation is an expression of pseudosymmetry,

owing to the central benzene ring. The hyperbolic rotation L4

takes properly into account the additional benzoic structure of

the C atoms, which in the K0 asymmetric unit have highly

correlated positions. The extended point group K generated

accordingly,

K � hL4;R6;K0i � hL4;R6;mxi � �4�6mm; �23�

is a pseudosymmetry group for the indexed C54 molecule.

There are four inequivalent C-atom positions in the K asym-

metric unit, with orbitsO�10��K�,O�20��K�,O�40��K� andO�46��K�
having a molecular multiplicity of 38, 6, 6 and 4, respectively

(Fig. 2). A molecular multiplicity indicates the number of orbit

points within the molecular form.

The crystallographic character of this extended point group

is ensured by the two-dimensional faithful integral repre-

sentations ÿ�K� and ÿ��K�, obtained by expressing the

element of K with respect to the hexagonal lattice bases

a1 � a0�1; 0�, a2 � a0�ÿ1=2; 31=2=2� and a�1 � aÿ1
0 �1; 1=31=2�,

a�2 � aÿ1
0 �0; 2=31=2� with, in our case, a0 � 1:433 AÊ :

Figure 1
Structure of the planar polyphenoid C54H22, with C atoms indicated by
®lled dots, assuming 2.8 AÊ for the diameter of the benzene ring and 1.5 AÊ

for the inter-ring single bond. In the model structure, indicated with open
circles, all CÐC distances have the same 1.433 AÊ value. This ensures that
the centers of the benzene rings in the model and in the molecule
coincide.



ÿ�R6� � R6�a� �
1 �1

1 0

 !
; ÿ�L4� � L4�a� �

3 1

2 1

� �
;

ÿ�mx� � mx�a� �
�1 1

0 1

 !
�24�

and correspondingly for ÿ��K�:

ÿ��R6� � R6�a�� �
0 �1

1 1

 !
; ÿ��L4� � L4�a�� �

3 2

1 1

� �
;

ÿ��mx� � mx�a�� �
�1 0

1 1

 !
: �25�

The relations between ÿ and ÿ� given in (19) are indeed

satis®ed.

The pseudosymmetry point group �4�6mm is the same as for

snow crystals (Janner, 1997) and for Z-DNA (Janner, 2000,

2001). However, to investigate the possible physical conse-

quences of this extended group on a self-consistent molecular

potential and on the electronic wave functions involved should

be easier for C54H22 than for Z-DNA or for snow crystals.

4.2. Hexaphenylbenzene

The interest of this molecule is due to the combination of a

two-dimensional architecture with a three-dimensional struc-

ture, having a propeller con®guration of a type observed in

other highly symmetrical hexasubstituted benzenes (Biemans,

1997). The molecular data have been taken from the X-ray

diffraction crystal structure determination by J. C. Bart,

omitting the H atoms (Bart, 1968). The approximate sixfold

symmetry suggests a hexagonal point group for the model

molecule should be adopted. This is, however, a fairly poor

characterization. A better one follows from the 1999 paper of

Berresheim et al. (1999), where it is observed that a number of

polyphenylene molecules share the motifs one ®nds in cubic

graphite (Gibson et al., 1946). Indeed, in cubic graphite one

®nds propeller-shaped local atomic arrangements involving

seven graphite rings: a central one, surrounded by six others

with ring planes perpendicular to cubic body diagonals. To get

a model for the chiral structure of hexaphenylbenzene, one

has to decompose the local achiral motif mentioned above

into two trigonal chiral components, and then to recombine

elements of the same chirality, related by a 60� rotation

around the hexagonal axis. The f.c.c. lattice of cubic graphite

then allows an indexing of the atomic positions of each

subsystem. An appropriate indexing for the whole is also

possible, along the lines indicated in the previous section, but

it requires a ®ve-dimensional superspace. The essential

elements of the present approach, however, already follow

from a three-dimensional treatment, which is much more

convenient. The higher-dimensional description will only be

mentioned, very brie¯y, at the end.

Let us consider the ®rst trigonal subsystem formed by the

central hexagon and the ones attached to C(2), C(4) and C(6),

respectively, and labeled by Bart as B, D and F. The second

subsystem is then given by the same central ring together with

the peripheral rings A, C and E. The two sets of indexed

positions then follow by putting at [ÿ101] the atoms C(1) and

C(2), respectively. The corresponding model and real coordi-

nates are indicated in Table 2(a,b), with respect to an ortho-

normal coordinate system. The numerical values indicated in

brackets are obtained from those given by Bart by an overall

shift of �x � ÿ2:397 and �y � 0:004 (which puts the origin at

the center of the molecule) followed by a ÿ17:73� rotation �0

around the hexagonal axis (corresponding to the [111] direc-

tion of the f.c.c. lattice) for the ®rst subsystem, and by one of

42:27� for the second subsystem.

In Fig. 3, the model structure is compared graphically with

the experimental one. The molecular scaled enclosing form is

hexagonal and involves two successive radial scalings, by a

factor of 1=2 each, as for C54H22, so that the central form is 1=4

of the external one, as indicated in Fig. 4. It is not evident that

this enclosing form is physically relevant but it has to be

considered in the general context of scaled enclosing forms.

The two sets of index positions for the two trigonal subsystems

of the (ideal) model structure are indicated in Fig. 5, together

with one of the enclosing cubes. In Fig. 4, the other enclosing

cube also appears in a view along the fourfold axis.
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Figure 2
Indexed C-atom positions of C54H22 with the enclosing rhombic scaled
form, delimited by planes, which are 2mm-equivalent to (10) through [40],
[20] and [10], respectively. Two radial scaling steps are involved, leading
from the external boundaries to intermediate ones and to what can be
considered to be the internal hole.
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As already pointed out, the main aim of the new approach is

the derivation of a pseudosymmetry group because it implies

more structural relations than the Euclidean symmetry group.

In the present case, we only show the existence of such a group

by means of an extended cubic point group leaving the f.c.c.

lattice invariant. This group does the job, but is certainly too

large for the hexaphenylbenzene molecule.

Let us start from the three-dimensional arithmetic group

Gl�3;Z�, which is obtained by adding a parabolic generator Py

to those of the cubic point group Oh � m�3m, with elements

Table 2
Cubic indexed positions and comparison between model and real coordinates of a ®rst and a second trigonal subsystem of hexaphenylbenzene (Bart,
1968).

(a) First trigonal subsystem

Cartesian coordinates model (real structure) (AÊ )

Trigonal subsystem Atom Indices (basis a) x �x0� y �y0� z �z0�
Cubic basis parameters: a0 � 1:0 AÊ , �0�111� � ÿ17:73�

0, B, D, F C(1) �101 ÿ1.000 (ÿ1.000) 0.000 (ÿ0.032) 1.000 (0.981)
C(2) 0�11 0.000 (0.018) ÿ1.000 (ÿ0.997) 1.000 (0.990)
C(3) 1�10 1.000 (0.997) ÿ1.000 (ÿ0.975) 0.000 (ÿ0.011)
C(4) 10�1 1.000 (0.972) 0.000 (ÿ0.004) ÿ1.000 (ÿ0.991)
C(5) 01�1 0.000 (0.004) 1.000 (1.005) ÿ1.000 (ÿ0.999)
C(6) �110 ÿ1.000 (ÿ0.991) 1.000 (1.002) 0.000 (0.029)
C(1B) 0�22 0.000 (0.025) ÿ2.000 (ÿ2.047) 2.000 (2.041)
C(2B) 1�23 1.000 (1.085) ÿ2.000 (ÿ2.001) 3.000 (3.002)
C(3B) 1�34 1.000 (1.034) ÿ3.000 (ÿ3.030) 4.000 (4.047)
C(4B) 0�44 0.000 (ÿ0.014) ÿ4.000 (ÿ3.948) 4.000 (4.070)
C(5B) �1�43 ÿ1.000 (ÿ1.023) ÿ4.000 (ÿ3.977) 3.000 (3.078)
C(6B) �1�32 ÿ1.000 (ÿ0.992) ÿ3.000 (ÿ2.998) 2.000 (2.085)
C(1D) 20�2 2.000 (1.962) 0.000 (ÿ0.104) ÿ2.000 (ÿ2.155)
C(2D) 31�2 3.000 (3.005) 1.000 (0.806) ÿ2.000 (ÿ2.259)
C(3D) 41�3 4.000 (3.959) 1.000 (0.673) ÿ3.000 (ÿ3.281)
C(4D) 40�4 4.000 (3.827) 0.000 (ÿ0.406) ÿ4.000 (ÿ4.164)
C(5D) 3�1�4 3.000 (2.730) ÿ1.000 (ÿ1.319) ÿ4.000 (ÿ4.092)
C(6D) 2�1�3 2.000 (1.816) ÿ1.000 (ÿ1.154) ÿ3.000 (ÿ3.065)
C(1F) �220 ÿ2.000 (ÿ1.975) 2.000 (2.110) 0.000 (0.097)
C(2F) �231 ÿ2.000 (ÿ1.959) 3.000 (2.983) 1.000 (1.185)
C(3F) �341 ÿ3.000 (ÿ2.856) 4.000 (4.046) 1.000 (1.266)
C(4F) �440 ÿ4.000 (ÿ3.834) 4.000 (4.206) 0.000 (0.243)
C(5F) �43�1 ÿ4.000 (ÿ3.877) 3.000 (3.296) ÿ1.000 (ÿ0.827)
C(6F) �32�1 ÿ3.000 (ÿ2.935) 2.000 (2.272) ÿ1.000 (ÿ0.910)

(b) Second trigonal subsystem

Cartesian coordinates model (real structure) (AÊ )

Trigonal subsystem Atom Indices (basis a) x �x0� y �y0� z �z0�
Cubic basis parameters: a0 � 1:0 AÊ , �0�111� � 42:27�

0, A, C, E C(1) �110 ÿ1.000 (ÿ1.015) 1.000 (0.966) 0.000 (ÿ0.002)
C(2) �101 ÿ1.000 (ÿ0.982) 0.000 (ÿ0.011) 1.000 (1.004)
C(3) 0�11 0.000 (0.018) ÿ1.000 (ÿ0.989) 1.000 (0.982)
C(4) 1�10 1.000 (0.976) ÿ1.000 (ÿ0.988) 0.000 (ÿ0.011)
C(5) 10�1 1.000 (1.006) 0.000 (0.003) ÿ1.000 (ÿ0.998)
C(6) 01�1 0.000 (ÿ0.002) 1.000 (1.018) ÿ1.000 (ÿ0.975)
C(1A) �220 ÿ2.000 (ÿ2.138) 2.000 (1.972) 0.000 (ÿ0.053)
C(2A) �231 ÿ2.000 (ÿ2.283) 3.000 (2.956) 1.000 (0.896)
C(3A) �341 ÿ3.000 (ÿ3.364) 4.000 (3.863) 1.000 (0.788)
C(4A) �440 ÿ4.000 (ÿ4.263) 4.000 (3.751) 0.000 (ÿ0.280)
C(5A) �43�1 ÿ4.000 (ÿ4.109) 3.000 (2.758) ÿ1.000 (ÿ1.206)
C(6A) �32�1 ÿ3.000 (ÿ3.041) 2.000 (1.866) ÿ1.000 (ÿ1.112)
C(1C) 0�22 ÿ0.000 (0.056) ÿ2.000 (ÿ2.056) 2.000 (2.053)
C(2C) 1�23 1.000 (1.142) ÿ2.000 (ÿ2.118) 3.000 (2.937)
C(3C) 1�34 1.000 (1.181) ÿ3.000 (ÿ3.082) 4.000 (3.923)
C(4C) 0�44 ÿ0.000 (0.110) ÿ4.000 (ÿ3.980) 4.000 (4.085)
C(5C) �1�43 ÿ1.000 (ÿ0.986) ÿ4.000 (ÿ3.906) 3.000 (3.215)
C(6C) �1�32 ÿ1.000 (ÿ1.013) ÿ3.000 (ÿ2.945) 2.000 (2.198)
C(1E) 20�2 2.000 (2.050) 0.000 (0.039) ÿ2.000 (ÿ2.037)
C(2E) 31�2 3.000 (2.996) 1.000 (1.062) ÿ2.000 (ÿ2.058)
C(3E) 41�3 4.000 (3.959) 1.000 (1.121) ÿ3.000 (ÿ3.049)
C(4E) 40�4 4.000 (4.044) 0.000 (0.128) ÿ4.000 (ÿ3.999)
C(5E) 3�1�4 3.000 (3.112) ÿ1.000 (ÿ0.917) ÿ4.000 (ÿ4.009)
C(6E) 2�1�3 2.000 (2.109) ÿ1.000 (ÿ0.964) ÿ3.000 (ÿ3.014)



expressed with respect to the cubic lattice basis c � fc1; c2; c3g.
As indicated by Coxeter & Moser (1957, p. 92), one can

choose as generators for Gl�3;Z� the matrices P � ÿmxy�c�,
O � 2x�c�, Q � R3�c� and U � Py�c� with

mxy�c� �
0 1 0

1 0 0

0 0 1

0B@
1CA; 2x�c� �

1 0 0

0 ÿ1 0

0 0 ÿ1

0B@
1CA;

R3�c� �
0 1 0

0 0 1

1 0 0

0B@
1CA; Py�c� �

1 1 0

0 1 0

0 0 1

0B@
1CA:

�26�

With respect to the f.c.c. lattice basis

f � ff1 � �0; 1
2 ;

1
2�; f2 � �12 ; 0; 1

2�; f3 � �12 ; 1
2 ; 0�g, the trans-

formations of m�3m are unimodular, but not the parabolic

transformation Py, only the squared one P2
y�c�:

Py�f � �
1 1

2
1
2

0 1
2 ÿ 1

2

0 1
2

3
2

0@ 1A; P2
y�f � �

1 1 1

0 0 ÿ1

0 1 2

0@ 1A: �27�

This de®nes a three-dimensional integral representation ÿ�K�
with, in particular, ÿ�P2

y� � P2
y�f �. One also has to check that

the dual representation ÿ��P2
y� � P2

y�f �� is integral. Indeed,

for f � � ff �1 � ��1; 1; 1�; f �2 � �1; �1; 1�; f �3 � �1; 1; �1�g, one

®nds:

P2
y�f �� �

1 0 0

1 0 1

1 �1 2

0@ 1A: �28�

Accordingly, the group

K � hm�3m;P2
yi �29�

is an extended crystallographic point group that leaves the

f.c.c. lattice invariant.

One then veri®es that the following atomic position of the

trigonal asymmetric unit of the ®rst subsystem of hexaphe-

nylbenzene C(1), C(2), C(2B), C(3B), C(5B) and C(6B) all

belong to the same orbitO��101��K�, as indicated in Fig. 5. So, for

example, one ®nds the following structural relations:

C�3B��1�34� ÿ!�1
C�6B���1�33� ÿ!�2

C�2��0�11� ÿ!�3
C�1���101�

�30�
with �1 � Rÿ1

3 2xmxyP2
ymxyR3, �2 � P2

yR3P2
yR3 and �3 � mxy.

In the same way, C(1), C(2), C(2A), C(3A), C(5A) and

C(6A) of the second trigonal subsystem, also belong to the

same orbit, but now with ��101� expressed with respect to the
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Figure 3
Comparison between the molecular structure of hexaphenylbenzene, as
observed in an orthorhombic crystal (black dots) and the corresponding
ideal model based on cubic graphite motifs (open circles). The
experimental twisting angle is about 65� and approximates the model
one of 70�320 between the body-diagonal directions in a cube.

Figure 4
Hexagonal scaled enclosing form of hexaphenylbenzene. The internal
shape (at the central ring) is scaled by a factor 1=4 from the external one
formed by the peripheral rings. The cubes enclosing the two trigonal
subsystems are indicated by dotted lines.

Figure 5
The model C-atom positions of hexaphenylbenzene are indexed for each
of the trigonal subsystems by corresponding f.c.c. lattice points (indicated
in roman and italic fonts, respectively). While the central ring is shared by
the two subsystems (implying a double indexing for the C atoms), the two
sets of three peripheral rings are related by a 60� rotation around the
hexagonal axis (and so also the two f.c.c. lattices around their common
[111] direction).
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60�-rotated basis c0 � fR6c1;R6c2;R6c3g. This shows that K is a

pseudosymmetry group for hexaphenylbenzene.

Finally, for taking into account the hexagonal symmetry of

hexaphenylbenzene, one has to consider the three-dimen-

sional Z-module M freely generated by the two cubic bases

c and c0. Because of the integral linear relation

c1 � c2 � c3 � c01 � c02 � c03, the rank of this module is ®ve and

not six. There is then a ®ve-dimensional representation space

for the superspace point group Ks � hm�3m;P2
y;R6i, which is a

pseudosymmetry group such that the atomic positions indi-

cated above become equivalent.

This paper has been written taking into account the need

expressed by the two referees of a paper on nucleic acids

submitted to J. Mol. Biol. to have a formal conceptual frame.
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